organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Fluorophenyl)-3-[5-methyl-1-(4methylphenyl)-1H-1,2,3-triazol-4-yl]-4,5dihydro-1H-pyrazole-1-carbothioamide

Bakr F. Abdel-Wahab,^a[‡] Ehab Abdel-Latif,^b Seik Weng Ng^{c,d} and Edward R. T. Tiekink^c*

^aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, ^bDepartment of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 26 May 2012; accepted 27 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.109; data-to-parameter ratio = 17.3.

In the title compound, C₂₀H₁₉FN₆S, the pyrazole ring has an envelope conformation, with the methine C atom being the flap atom. The dihedral angle between the least-squares plane through the pyrazole and triazole rings is $7.59 (9)^{\circ}$, and the triazole and attached benzene ring form a dihedral angle of 74.79 (9)°. The thiourea group is coplanar with the pyrazole ring $[N-N-C-S \text{ torsion angle} = -179.93 (11)^{\circ}]$, which enables the formation of an intramolecular N-H···N hydrogen bond. In the crystal, inversion-related molecules associate via N-H···S hydrogen bonds and eight-membered $\{\cdots$ HNCS $\}_2$ synthons feature in the crystal packing. These synthons are connected into supramolecular chains along the a axis via N-H···F hydrogen bonds, and the chains are consolidated into layers in the *ab* plane via $C-H \cdots S$ and $C-H \cdots F$ contacts.

Related literature

For the biological activity of pyrazolyl-1,2,3-triazoles, see: Abdel-Wahab et al. (2012a); Booth & Ross (1982); Curran (1982). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b).

‡ Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Experimental

Crystal data

C20H19FN6S $V = 1986.31 (17) \text{ Å}^3$ $M_r = 394.47$ Z = 4Monoclinic, $P2_1/c$ a = 9.4388 (4) Å b = 6.5476 (3) Å c = 32.1483 (18) Å $\beta = 91.288 \ (4)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.855, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.109$
S = 1.02
4551 reflections
263 parameters

Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 100 K $0.40 \times 0.30 \times 0.20 \text{ mm}$

7765 measured reflections 4551 independent reflections 3809 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$

H atoms treated by a mixture of	
independent and constrained	
refinement	
$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots S1^{i}$	0.89 (2)	2.432 (19)	3.3159 (14)	172.7 (16)
$N1 - H2N \cdots F1^{ii}$	0.86 (2)	2.29 (2)	2.9940 (18)	138.9 (17)
$N1 - H2N \cdots N3$	0.86 (2)	2.30 (2)	2.6554 (19)	104.9 (15)
$C3 - H3A \cdots S1^{iii}$	0.99	2.87	3.8390 (19)	166
$C9-H9\cdots S1^{iv}$	0.95	2.83	3.5595 (18)	135
$C15-H15\cdots F1^{v}$	0.95	2.41	3.2502 (19)	148

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) x + 1, y, z; (iii) x, y - 1, z; (iv) -x, -y + 2, -z + 1; (v) x + 1, y - 1, z.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research Scheme (grant No. UM.C/HIR/MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2439).

References

- Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263-268.
- Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, 01956-01957.
- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Booth, J. H. & Ross, A. S. (1982). US Patent 4336375.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Curran, W. V. (1982). US Patent 4334062. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

supplementary materials

Acta Cryst. (2012). E68, o1954–o1955 [doi:10.1107/S1600536812024245]

5-(4-Fluorophenyl)-3-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol-4-yl]-4,5dihydro-1*H*-pyrazole-1-carbothioamide

Bakr F. Abdel-Wahab, Ehab Abdel-Latif, Seik Weng Ng and Edward R. T. Tiekink

Comment

In continuation of structural studies of related drug candidates (Abdel-Wahab *et al.*, 2012*b*), the title compound, (I), was investigated crystallographically. This compound is of interest owing to the established biological activities exhibited by pyrazolyl-1,2,3-triazoles (Abdel-Wahab *et al.*, 2012*a*; Booth & Ross, 1982; Curran, 1982).

The pyrazole ring in (I), Fig. 1, adopts an envelope conformation (r.m.s. deviation = 0.138 Å) with the methine-C2 atom being the flap atom. The dihedral angle between the least-squares plane through this ring and the adjacent triazole ring is 7.59 (9)°. The benzene ring connected to the triazole ring is twisted out of its plane, forming a dihedral angle of 74.79 (9)°. The N3—N2—C1—S1 torsion angle of -179.93 (11)° indicates that the thiourea moiety is coplanar with the pyrazole ring. This arrangement coupled with the orientation of the amino group towards the ring enables the formation of an intramolecular N—H···N hydrogen bond (Table 1).

In the crystal, centrosymmetrically related molecules associate *via* N—H···S hydrogen bonds and eight-membered {···HNCS}₂ synthons feature in the crystal packing (Table 1). These are connected into supramolecular chains along the *a* axis *via* N—H···F hydrogen bonds (Fig. 2 and Table 1). Chains are connected into layers in the *ab* plane *via* C—H···S and C—H···F contacts (Table 1). Layers inter-digitate along the *c* axis with no specific interactions between them (Fig. 3).

Experimental

The title compound was prepared according to the reported method (Abdel-Wahab *et al.*, 2012*a*). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement

C-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms] and were included in the refinement in the riding model approximation. The N-bound H atoms were freely refined.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Figure 2

A view of a supramolecular chain along the *a* axis in (I). The N—H…S and N—H…F hydrogen bonds are shown as blue and orange dashed lines, respectively.

Figure 3

A view in projection down the *b* axis of the unit-cell contents for (I) highlighting the inter-digitation of layers along the *c* axis. The N—H…S, N—H…F, C—H…S and C—H…F interactions are shown as blue, orange, purple and brown dashed lines, respectively.

5-(4-Fluorophenyl)-3-[5-methyl-1-(4-methylphenyl)-1*H*-1,2,3-triazol- 4-yl]-4,5-dihydro-1*H*-pyrazole-1-carbothioamide

Crystal data

F(000) = 824
$D_{\rm x} = 1.319 {\rm Mg} {\rm m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3598 reflections
$\theta = 2.2 - 27.5^{\circ}$
$\mu = 0.19 \text{ mm}^{-1}$
T = 100 K
Prism, light-brown
$0.40 \times 0.30 \times 0.20$ mm
$T_{\min} = 0.855, \ T_{\max} = 1.000$

Agnenii Supernova Duai	$I_{\rm min} = 0.855, I_{\rm max} = 1.000$
diffractometer with an Atlas detector	7765 measured reflections
Radiation source: SuperNova (Mo) X-ray	4551 independent reflections
Source	3809 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.027$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
ω scans	$h = -11 \rightarrow 12$
Absorption correction: multi-scan	$k = -8 \rightarrow 8$
(CrysAlis PRO; Agilent, 2011)	$l = -23 \rightarrow 41$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4551 reflections	and constrained refinement
263 parameters	$w = 1/[\sigma^2(F_o^2) + (0.045P)^2 + 1.138P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.32997 (4)	1.28074 (6)	0.507140 (13)	0.01661 (12)
F1	-0.23235 (10)	1.32770 (17)	0.39047 (3)	0.0253 (3)
N1	0.53882 (15)	1.2902 (2)	0.45302 (5)	0.0181 (3)
N2	0.38250 (13)	1.0266 (2)	0.44567 (4)	0.0137 (3)
N3	0.45951 (13)	0.9562 (2)	0.41184 (4)	0.0145 (3)
N4	0.40790 (15)	0.4715 (2)	0.35943 (5)	0.0212 (3)
N5	0.47668 (16)	0.3904 (2)	0.32855 (5)	0.0224 (3)
N6	0.57249 (14)	0.5319 (2)	0.31626 (4)	0.0161 (3)
C1	0.42324 (16)	1.1970 (2)	0.46636 (5)	0.0139 (3)
C2	0.25153 (16)	0.9101 (2)	0.45166 (5)	0.0139 (3)
H2	0.2393	0.8789	0.4818	0.017*
C3	0.28474 (17)	0.7137 (3)	0.42742 (5)	0.0162 (3)
H3A	0.3146	0.6017	0.4463	0.019*
H3B	0.2023	0.6684	0.4102	0.019*
C4	0.40479 (16)	0.7836 (3)	0.40082 (5)	0.0145 (3)
C5	0.12296 (16)	1.0241 (2)	0.43419 (5)	0.0136 (3)
C6	0.13589 (17)	1.1894 (3)	0.40729 (5)	0.0170 (3)
H6	0.2272	1.2330	0.3992	0.020*
C7	0.01603 (17)	1.2911 (3)	0.39217 (5)	0.0183 (4)
H7	0.0241	1.4039	0.3738	0.022*
C8	-0.11438 (17)	1.2240 (3)	0.40457 (5)	0.0177 (4)
C9	-0.13193 (17)	1.0592 (3)	0.43024 (5)	0.0200 (4)
Н9	-0.2238	1.0148	0.4376	0.024*
C10	-0.01149 (17)	0.9592 (3)	0.44518 (5)	0.0176 (3)
H10	-0.0210	0.8450	0.4631	0.021*

C11	0 45001 (17)	0 ((24 (2))	0.2((07.5))	0.0157 (2)
	0.45981 (17)	0.0034 (3)	0.3069/(3)	0.0157 (3)
C12	0.56581 (17)	0.7042 (3)	0.33933 (5)	0.0158 (3)
C13	0.65699 (19)	0.8859 (3)	0.33351 (6)	0.0245 (4)
H13A	0.6911	0.8880	0.3049	0.037*
H13B	0.7380	0.8799	0.3531	0.037*
H13C	0.6021	1.0100	0.3387	0.037*
C14	0.66475 (17)	0.4832 (3)	0.28258 (5)	0.0167 (3)
C15	0.77454 (18)	0.3469 (3)	0.28951 (5)	0.0204 (4)
H15	0.7917	0.2913	0.3165	0.025*
C16	0.85941 (19)	0.2924 (3)	0.25663 (6)	0.0229 (4)
H16	0.9354	0.1995	0.2613	0.027*
C17	0.83530 (18)	0.3714 (3)	0.21690 (5)	0.0207 (4)
C18	0.72555 (19)	0.5103 (3)	0.21112 (6)	0.0260 (4)
H18	0.7092	0.5685	0.1844	0.031*
C19	0.63922 (19)	0.5658 (3)	0.24361 (5)	0.0234 (4)
H19	0.5635	0.6594	0.2391	0.028*
C20	0.9250 (2)	0.3050 (3)	0.18119 (6)	0.0324 (5)
H20A	1.0108	0.2375	0.1920	0.049*
H20B	0.9514	0.4247	0.1648	0.049*
H20C	0.8710	0.2096	0.1635	0.049*
H1N	0.5662 (19)	1.407 (3)	0.4648 (6)	0.020 (5)*
H2N	0.574 (2)	1.255 (3)	0.4297 (7)	0.027 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0194 (2)	0.0157 (2)	0.0149 (2)	-0.00300 (17)	0.00448 (15)	-0.00283 (16)
F1	0.0177 (5)	0.0359 (6)	0.0223 (5)	0.0063 (5)	-0.0003 (4)	0.0081 (5)
N1	0.0174 (7)	0.0180 (8)	0.0191 (8)	-0.0041 (6)	0.0050 (6)	-0.0068 (6)
N2	0.0125 (6)	0.0151 (7)	0.0137 (7)	-0.0008(5)	0.0024 (5)	-0.0030 (6)
N3	0.0149 (6)	0.0154 (7)	0.0132 (7)	0.0016 (6)	0.0022 (5)	-0.0015 (6)
N4	0.0287 (8)	0.0162 (7)	0.0190 (7)	-0.0038 (6)	0.0068 (6)	-0.0044 (6)
N5	0.0291 (8)	0.0177 (7)	0.0208 (8)	-0.0071 (6)	0.0080 (6)	-0.0044 (6)
N6	0.0203 (7)	0.0133 (7)	0.0147 (7)	-0.0028 (6)	0.0027 (5)	-0.0007 (6)
C1	0.0145 (7)	0.0131 (8)	0.0141 (8)	0.0020 (6)	-0.0026 (6)	0.0011 (6)
C2	0.0159 (8)	0.0118 (7)	0.0142 (8)	-0.0031 (6)	0.0014 (6)	0.0004 (6)
C3	0.0180 (8)	0.0137 (8)	0.0170 (8)	-0.0008 (7)	0.0025 (6)	-0.0006 (7)
C4	0.0155 (7)	0.0143 (8)	0.0138 (8)	0.0019 (6)	0.0001 (6)	0.0013 (6)
C5	0.0153 (7)	0.0136 (8)	0.0121 (7)	-0.0015 (6)	0.0011 (6)	-0.0023 (6)
C6	0.0150 (8)	0.0186 (8)	0.0174 (8)	-0.0042 (7)	0.0019 (6)	-0.0003 (7)
C7	0.0204 (8)	0.0179 (8)	0.0166 (8)	-0.0010 (7)	0.0004 (6)	0.0041 (7)
C8	0.0148 (8)	0.0230 (9)	0.0152 (8)	0.0036 (7)	-0.0012 (6)	0.0003 (7)
C9	0.0142 (8)	0.0270 (10)	0.0189 (8)	-0.0034 (7)	0.0033 (6)	0.0027 (7)
C10	0.0182 (8)	0.0187 (8)	0.0161 (8)	-0.0029 (7)	0.0017 (6)	0.0021 (7)
C11	0.0180 (8)	0.0132 (8)	0.0157 (8)	-0.0006 (6)	0.0001 (6)	-0.0010 (6)
C12	0.0188 (8)	0.0137 (8)	0.0150 (8)	0.0003 (7)	0.0000 (6)	-0.0032 (7)
C13	0.0273 (9)	0.0177 (9)	0.0290 (10)	-0.0070 (8)	0.0093 (8)	-0.0067 (8)
C14	0.0204 (8)	0.0151 (8)	0.0148 (8)	-0.0022 (7)	0.0033 (6)	-0.0033 (7)
C15	0.0252 (9)	0.0213 (9)	0.0148 (8)	0.0012 (7)	0.0008 (7)	0.0016 (7)
C16	0.0236 (9)	0.0239 (9)	0.0214 (9)	0.0059 (8)	0.0021 (7)	0.0015 (8)

supplementary materials

C17	0.0239 (9)	0.0207 (9)	0.0177 (8)	0.0020 (7)	0.0039 (7)	-0.0039 (7)	
C18	0.0330 (10)	0.0292 (10)	0.0158 (9)	0.0075 (8)	0.0030 (7)	0.0024 (8)	
C19	0.0272 (9)	0.0240 (9)	0.0192 (9)	0.0104 (8)	0.0020 (7)	0.0019 (8)	
C20	0.0372 (11)	0.0379 (12)	0.0223 (10)	0.0130 (9)	0.0089 (8)	0.0000 (9)	

Geometric parameters (Å, °)

· · · · · · · · · · · · · · · · · · ·				
S1—C1	1.6873 (17)	C7—C8	1.374 (2)	
F1—C8	1.3724 (19)	C7—H7	0.9500	
N1—C1	1.329 (2)	C8—C9	1.371 (2)	
N1—H1N	0.89 (2)	C9—C10	1.389 (2)	
N1—H2N	0.86 (2)	С9—Н9	0.9500	
N2—C1	1.350 (2)	C10—H10	0.9500	
N2—N3	1.3996 (18)	C11—C12	1.379 (2)	
N2—C2	1.469 (2)	C12—C13	1.483 (2)	
N3—C4	1.289 (2)	C13—H13A	0.9800	
N4—N5	1.311 (2)	C13—H13B	0.9800	
N4—C11	1.368 (2)	C13—H13C	0.9800	
N5—N6	1.360 (2)	C14—C19	1.381 (2)	
N6-C12	1.352 (2)	C14—C15	1.382 (2)	
N6-C14	1.441 (2)	C15—C16	1.387 (2)	
C2—C5	1.521 (2)	C15—H15	0.9500	
C2—C3	1.539 (2)	C16—C17	1.392 (2)	
C2—H2	1.0000	C16—H16	0.9500	
C3—C4	1.506 (2)	C17—C18	1.388 (3)	
С3—НЗА	0.9900	C17—C20	1.505 (2)	
C3—H3B	0.9900	C18—C19	1.387 (2)	
C4—C11	1.449 (2)	C18—H18	0.9500	
C5—C10	1.391 (2)	C19—H19	0.9500	
C5—C6	1.392 (2)	C20—H20A	0.9800	
C6—C7	1.391 (2)	C20—H20B	0.9800	
С6—Н6	0.9500	C20—H20C	0.9800	
C1—N1—H1N	119.3 (12)	C8—C9—C10	118.08 (15)	
C1—N1—H2N	119.6 (14)	С8—С9—Н9	121.0	
H1N—N1—H2N	119.4 (19)	С10—С9—Н9	121.0	
C1—N2—N3	120.50 (13)	C9—C10—C5	120.82 (16)	
C1—N2—C2	126.55 (13)	C9—C10—H10	119.6	
N3—N2—C2	112.60 (12)	C5-C10-H10	119.6	
C4—N3—N2	106.88 (13)	N4—C11—C12	109.01 (14)	
N5—N4—C11	108.96 (14)	N4—C11—C4	119.94 (15)	
N4—N5—N6	106.73 (13)	C12—C11—C4	131.01 (16)	
C12—N6—N5	111.69 (13)	N6-C12-C11	103.62 (14)	
C12—N6—C14	129.31 (14)	N6-C12-C13	124.45 (15)	
N5-N6-C14	119.00 (13)	C11—C12—C13	131.93 (16)	
N1—C1—N2	116.57 (15)	C12—C13—H13A	109.5	
N1—C1—S1	123.20 (13)	C12—C13—H13B	109.5	
N2—C1—S1	120.23 (12)	H13A—C13—H13B	109.5	
N2—C2—C5	111.32 (13)	C12—C13—H13C	109.5	
N2-C2-C3	100.70 (12)	H13A—C13—H13C	109.5	

C5—C2—C3	113.13 (13)	H13B—C13—H13C	109.5
N2—C2—H2	110.4	C19—C14—C15	120.95 (16)
С5—С2—Н2	110.4	C19—C14—N6	119.95 (15)
C3—C2—H2	110.4	C15—C14—N6	119.05 (15)
C4—C3—C2	101.42 (13)	C14—C15—C16	119.14 (16)
C4—C3—H3A	111.5	C14—C15—H15	120.4
С2—С3—НЗА	111.5	C16—C15—H15	120.4
C4—C3—H3B	111.5	C15—C16—C17	121.23 (17)
С2—С3—Н3В	111.5	C15—C16—H16	119.4
НЗА—СЗ—НЗВ	109.3	C17—C16—H16	119.4
N3—C4—C11	122.33 (15)	C18—C17—C16	118.19 (16)
N3—C4—C3	114.34 (14)	C18—C17—C20	121.20 (17)
C11—C4—C3	123.26 (15)	C16—C17—C20	120.61 (16)
C10—C5—C6	119.23 (15)	C19—C18—C17	121.34 (17)
C10—C5—C2	118.75 (15)	C19—C18—H18	119.3
C6—C5—C2	122.02 (14)	C17—C18—H18	119.3
C7—C6—C5	120.48 (15)	C14—C19—C18	119.14 (17)
С7—С6—Н6	119.8	C14—C19—H19	120.4
С5—С6—Н6	119.8	С18—С19—Н19	120.4
C8—C7—C6	118.18 (16)	С17—С20—Н20А	109.5
С8—С7—Н7	120.9	С17—С20—Н20В	109.5
С6—С7—Н7	120.9	H20A—C20—H20B	109.5
C9—C8—F1	118.69 (14)	С17—С20—Н20С	109.5
C9—C8—C7	123.19 (16)	H20A—C20—H20C	109.5
F1—C8—C7	118.12 (15)	H20B-C20-H20C	109.5
C1—N2—N3—C4	174.29 (14)	C6—C5—C10—C9	-1.1 (3)
C2—N2—N3—C4	-12.04 (17)	C2—C5—C10—C9	179.58 (15)
C11—N4—N5—N6	-0.27 (19)	N5—N4—C11—C12	0.2 (2)
N4—N5—N6—C12	0.23 (19)	N5—N4—C11—C4	-177.76 (15)
N4—N5—N6—C14	179.55 (14)	N3-C4-C11-N4	172.91 (15)
N3—N2—C1—N1	-0.5 (2)	C3—C4—C11—N4	-3.8 (2)
C2—N2—C1—N1	-173.19 (15)	N3-C4-C11-C12	-4.6 (3)
N3—N2—C1—S1	-179.93 (11)	C3—C4—C11—C12	178.72 (17)
C2—N2—C1—S1	7.3 (2)	N5—N6—C12—C11	-0.08 (18)
C1—N2—C2—C5	72.6 (2)	C14—N6—C12—C11	-179.32 (16)
N3—N2—C2—C5	-100.65 (15)	N5—N6—C12—C13	179.88 (16)
C1—N2—C2—C3	-167.24 (15)	C14—N6—C12—C13	0.6 (3)
N3—N2—C2—C3	19.54 (16)	N4-C11-C12-N6	-0.08 (18)
N2—C2—C3—C4	-18.17 (15)	C4-C11-C12-N6	177.61 (17)
C5—C2—C3—C4	100.72 (15)	N4-C11-C12-C13	179.96 (18)
N2—N3—C4—C11	-178.76 (14)	C4—C11—C12—C13	-2.4 (3)
N2—N3—C4—C3	-1.78 (18)	C12—N6—C14—C19	-76.7 (2)
C2-C3-C4-N3	13.53 (18)	N5-N6-C14-C19	104.1 (2)
C2—C3—C4—C11	-169.51 (15)	C12—N6—C14—C15	106.0 (2)
N2-C2-C5-C10	-165.88 (14)	N5-N6-C14-C15	-73.2 (2)
C3—C2—C5—C10	81.57 (18)	C19—C14—C15—C16	-0.3 (3)
N2—C2—C5—C6	14.8 (2)	N6-C14-C15-C16	176.99 (16)
C3—C2—C5—C6	-97.72 (18)	C14—C15—C16—C17	-0.4(3)

C10—C5—C6—C7	1.2 (2)	C15—C16—C17—C18	1.4 (3)
C2—C5—C6—C7	-179.49 (15)	C15—C16—C17—C20	-177.77 (18)
C5—C6—C7—C8	0.1 (3)	C16—C17—C18—C19	-1.7 (3)
C6—C7—C8—C9	-1.6 (3)	C20-C17-C18-C19	177.47 (19)
C6—C7—C8—F1	178.40 (15)	C15—C14—C19—C18	0.0 (3)
F1-C8-C9-C10	-178.27 (15)	N6-C14-C19-C18	-177.25 (16)
C7—C8—C9—C10	1.7 (3)	C17—C18—C19—C14	1.0 (3)
C8—C9—C10—C5	-0.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1N····S1 ⁱ	0.89 (2)	2.432 (19)	3.3159 (14)	172.7 (16)
N1—H2N····F1 ⁱⁱ	0.86 (2)	2.29 (2)	2.9940 (18)	138.9 (17)
N1—H2 <i>N</i> ···N3	0.86 (2)	2.30 (2)	2.6554 (19)	104.9 (15)
C3—H3A···S1 ⁱⁱⁱ	0.99	2.87	3.8390 (19)	166
C9—H9····S1 ^{iv}	0.95	2.83	3.5595 (18)	135
C15—H15…F1 ^v	0.95	2.41	3.2502 (19)	148

Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x, -y+2, -z+1; (v) x+1, y-1, z.